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Abstract We construct, in classical two-time physics, the necessary structure for the most
general configuration space formulation of quantum mechanics containing gravity in d + 2
dimensions. This structure is composed of a symmetric Riemannian metric tensor and of
a vector field that defines a section of a flat U (1) bundle over space-time. This construction
is possible because of the existence of a finite local scale invariance of the Hamiltonian
and because two-time physics contains, at the classical level, a local generalization of the
discrete duality symmetry between position and momentum that underlies the structure of
quantum mechanics.

Keywords Massless relativistic particles · Local scale invariance · 2T physics ·
Riemannian spaces

1 Introduction

The symmetry transformations of a classical action functional describing a physical sys-
tem can be divided into four types. The most common type consists of the rigid (global)
infinitesimal symmetry transformations. These are infinitesimal transformations of the dy-
namic variables, and possibly of the auxiliary variables that appear in the action functional,
parametrized by constant arbitrary infinitesimal parameters.

Also quite common are the local infinitesimal symmetry transformations, which com-
pose the second type. These are infinitesimal transformations of the dynamic variables, and
auxiliary variables, parametrized by arbitrary infinitesimal parameters which depend on the
manifold point where the transformations are performed.

The last two types of symmetry transformations are not infinitesimal transformations
and correspond to the finite rigid and finite local symmetry transformations. These are in
some cases rather subtle symmetry transformations because their finite character is related
with topological aspects of the underlying manifold. And this relation is important because
the topological aspects of a manifold are related to the non trivial diffeomorphic-covariant

W. Chagas-Filho (�)
Physics Department, Federal University of Sergipe, Aracaju, Brazil
e-mail: wfilho@ufs.br

mailto:wfilho@ufs.br


1572 Int J Theor Phys (2008) 47: 1571–1593

representations of the Heisenberg algebra over the manifold [1]. We can then use the finite
symmetry transformations on a certain topologically non-trivial manifold to investigate the
general structure of quantum mechanics.

In this paper we are interested in the Lorentz SO(d,2) invariance. This invariance man-
ifests itself as conformal invariance of the scalar relativistic massless particle in a d di-
mensional Minkowski space only if a compactification of the space-time is assumed [2, 3].
SO(d,2) turns out to be the isometry of (d + 1)-dimensional Anti de Sitter (AdS) space if
a slightly different compactification of space-time is assumed [2]. These two slightly dif-
ferent compactifications then reveal that the d-dimensional Minkowski space is the bor-
der of the (d + 1)-dimensional AdS space, an observation that is the cornerstone of the
AdS/CFT conjecture [4, 5]. It is then important to understand other possible ramifications
of the Lorentz SO(d,2) invariance.

SO(d,2) is also the rigid symmetry of two-time (2T) physics [6–12], where it appears
as a consequence of the first class Hamiltonian constraints. From the point of view of 2T
physics the known fundamental gravitational and gauge interactions in d dimensions are
all embedded in a d + 2 dimensional flat Minkowski space with two timelike dimensions.
From this point of view the fundamental interactions display higher dimensional space-time
symmetries that otherwise would remain hidden. In the current formulation of two-time
physics compactification of the (d +2)-dimensional Minkowski space is avoided by consid-
ering only infinitesimal rigid SO(d,2) transformations. In particular, only infinitesimal rigid
scale and special conformal transformations are defined. The local versions of these two
infinitesimal transformations, together with diffeomorphism invariance, compose the local
Sp(2,R) ∼ SO(1,2) gauge invariance of two-time physics.

However, despite avoiding the consideration of the implications of space-time compact-
ification, topological considerations necessarily arise in consequence of the nontrivial con-
figuration space topology induced by the first class constraints of 2T physics. These topolog-
ical considerations have a fundamental origin. Quantum dynamics requires the definition of
a Riemannian metric structure on configuration space, whose determinant directly specifies
the normalization of position eigenstates in order to ensure the correct covariant proper-
ties of the Heisenberg algebra representations under diffeomorphisms of the configuration
manifold [1]. In addition, due to the local arbitrariness in the phase of position eigenstates,

|x̃〉 = exp

{
i

�
β(x)

}
|x〉 (1.1)

a flat U(1) bundle is always associated to any such representation of the Heisenberg alge-
bra [1]. In the case of a simply connected manifold, this flat U(1) bundle may always be
globally trivialized over the entire configuration manifold M , thereby corresponding to the
ordinary trivial representation of the Heisenberg algebra. However, for configuration spaces
of non trivial mapping class group π1(M), an infinity of inequivalent representations be-
comes possible, being labelled by the non trivial holonomies of the flat U(1) bundle around
the noncontractile cycles in the configuration manifold [1]. This last situation is exactly the
one we have in 2T physics. This is because the Hamiltonian constraints require, for consis-
tency, that the origin of phase space be removed. This induces a non-trivial configuration
space topology which will then require the presence, in the quantized 2T theory, of a vector
field of vanishing strength tensor associated to the flat U(1) bundle which will characterize
the inequivalent representations of the Heisenberg algebra. The search for a naturally in-
duced metric structure in the d + 2 dimensional space of 2T physics, and the construction
of a classical 2T action with a background vector field of vanishing strength tensor, are the
subjects of this paper.
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A natural geometrical interpretation [21] of gauge fields is to identify the vector poten-
tials AM with the connection coefficients of the principal fiber space whose base is Rie-
mannian space-time, the fiber being a finite gauge Lie group G. In this case, the stress
tensor FMN of the gauge field becomes the curvature tensor of the fiber space. For a flat
U(1) bundle, FMN = 0. An approach to the introduction of background gravitational and
gauge fields in 2T physics was first presented in [12]. In [12], the linear realization of the
Sp(2,R) gauge algebra of two-time physics is required to be preserved when background
gravitational and gauge fields come into play. To satisfy this requirement, the gravitational
field must satisfy a homothety condition [12], while in the absence of gravitational fields the
gauge field AM(X) must satisfy the conditions [12]

X.A(X) = 0, (1.2a)

∂MAM(X) = 0, (1.2b)

(X.∂ + 1)AM(X) = 0 (1.2c)

which were first proposed by Dirac [13] in 1936. Dirac proposed these conditions as sub-
sidiary conditions to describe the usual 4-dimensional Maxwell electrodynamic theory as
a theory in 6 dimensions which automatically displays SO(4,2) symmetry.

Dirac’s conditions (1.2) are a reflex of a hidden fundamental Sp(2,R) symmetry in
Maxwell’s electrodynamics. This can be seen as follows. If we recall that in the topologically
trivial [1] transition to quantum mechanics we can substitute XM → XM and PM → i� ∂

∂XM ,
we can construct a semi-classical approximation where derivatives with respect to XM are
substituted by PM and rewrite Dirac’s conditions (1.2) in the form

X.A(X) = 0, (1.3a)

P.A(X) = 0, (1.3b)

(X.P + 1)AM(X) = 0. (1.3c)

For an electrodynamic vector field, the condition for the closure of the Sp(2,R) gauge alge-
bra of 2T physics is [12]

XMFMN = XM

(
∂AN

∂XM
− ∂AM

∂XN

)
= 0. (1.4)

Using again our semi-classical approximation, condition (1.4) becomes

(X.P + 1)AN = PN(X.A). (1.5)

We see from (1.5) that the Sp(2,R) closure condition (1.4) leads to Dirac’s condition (1.3c)
only if we first impose condition (1.3a). When this is done, the rigid SO(4,2) invariance of
electrodynamics is the reflex of a local Sp(2,R) invariance. But for the case we are interested
here, namely that of a topological vector field associated to a flat U(1) bundle, FMN = 0, and
so condition (1.4) is trivially satisfied. Therefore, in the case of a topological vector field,
even if we impose condition (1.3a) first, Dirac’s condition (1.3c) can not be reached. On the
contrary, if we impose (1.3c) first, then (1.3a) can not be reached. We must then search for
an alternative set of conditions on the vector field if we want our topological 2T action to
display local Sp(2,R) and consequently rigid SO(d,2) invariances.
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It is important to find this correct set of subsidiary conditions on the topological vector
field. As demonstrated in [1], vector fields of vanishing strength tensor play a fundamental
role in the generalization of quantum mechanics in the position representation. In this gener-
alization, this kind of vector field also necessarily appears, together with the determinant of
the Riemannian metric tensor, in the most general expression of the position matrix elements
for self-adjoint momentum operators in configuration spaces with non-trivial topology,

〈X|P̂M |X′〉 = i�

G1/4(X)

∂

∂XM

[
1

G1/4(X)
δd(X − X′)

]

+ 1√
G(X)

AM(X)δd(X − X′) (1.6)

where G(X) = detGMN(X). We conclude from this generalization of quantum mechanics
that vector fields of vanishing strength tensor in topologically non-trivial spaces will play
an important role in the also important process of further unifying general relativity and
quantum mechanics beyond the configuration space treatment exposed in [1].

However, as we saw above, the conditions (1.2) obtained in [12], or their semi-classical
approximations (1.3), are not guaranteed to be valid for vector fields of vanishing strength
tensor. Therefore these conditions can not be used in the process of accommodating gravity
into quantum mechanics in the higher dimensional space-time of 2T physics. The set of
conditions on the vector field we obtain in this paper has a different nature from that of the set
(1.2). While the set (1.2) is formed from subsidiary kinematical conditions with no special
significance, the set of conditions we obtain here has a more fundamental origin because it
is formed by the first class Hamiltonian constraints for 2T physics with a topological vector
field. This will be explicitly verified in section four, where we show that these first class
constraints compose the correct conserved Hamiltonian Noether charge associated to local
Sp(2,R) invariance in the presence of the topological vector field.

The formulation of 2T physics with vector fields we present in this paper has impli-
cations, some of which are now being investigated, in the non-relativistic and relativistic
quantum mechanics, in d − 1 dimensions and d dimensions respectively, of physical sys-
tems enjoying local infinitesimal conformal SO(1,2) ∼ Sp(2,R) symmetry and/or global
infinitesimal Lorentz SO(d,2) symmetry. The list of these systems starts with the free mas-
sive non-relativistic particle and ends with black holes, passing through the harmonic os-
cillator, the Hydrogen atom, the de Sitter and Anti de Sitter spaces, and contains all the
dynamic systems that have a unified description given by 2T physics. Our formulation of
2T physics with vector fields can also lead to interesting insights into the implications of the
wave-particle duality on the general structure of quantum mechanics and provide a formula-
tion of quantum mechanics with a single time where position and momentum are explicitly
treated as locally indistinguishable variables [22]. Recall that the results in [1] are valid
for configuration space only. Here the first class constraint structure of two-time physics,
which is what ultimately requires a metric with two time-like dimensions, also requires the
origin of phase space to be removed [3]. This creates a non-trivial phase space topology,
with inequivalent diffeomorphic covariant representations of the Heisenberg algebra over
the configuration space (viewed as part of the phase space), which are all classified in terms
of vector fields with a vanishing second-rank antisymmetric strength tensor. In this paper
we study this situation at a semi-classical level, present a Hamiltonian formulation of 2T
physics with such a kind of vector fields, and show that the action we compute has a rigid
infinitesimal SO(d,2) invariance. We also show that our action has a local infinitesimal in-
variance which generalizes the local Sp(2,R) invariance in the presence of the vector field
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and compute the corresponding conserved Hamiltonian Noether charge. These results can
be used as the basis for a formulation of quantum mechanics which naturally accommodates
gravity in higher dimensions based on the construction described in [1]. They also suggest
that a momentum space version of the results in [1] is straightforward.

It has been known for some time [21] that the gravitational field, regarded as a gauge
field, can correspond to several symmetry groups: (1) the general covariant group; (2) the
local Lorentz group; and (3) the group of scale transformations of the interval. In the first
case the properties of the gravitational field are determined by the properties of the metric
tensor, and this gives the usual Einstein theory. In the second case, they are determined by
the properties of the Ricci connection coefficients, and this leads to field equations of fourth
order. In the third case it is assumed that the source of the field is the trace of the energy-
momentum tensor and that the carriers are scalar particles [21]. Consequently, the approach
based on gauge symmetries can lead to more general theories than that of Einstein. In this
paper we are somewhat in the context of the third point of view. This is because Lorentz
SO(d,2) invariance manifests itself as conformal invariance of the relativistic scalar mass-
less particle action in d dimensions, and the 2T physics action is the higher dimensional
generalization of the scalar massless particle action to d + 2 dimensions. For these reasons,
in the next section we examine the rigid and local symmetries of the massless particle action.
We present a finite local scale invariance of the particle’s Hamiltonian that induces a trans-
formation of the position coordinates which in this paper we are inclined to interpret as
the classical correspondent of the quantum local phase transformation (1.1) of the position
eigenstates. We also show how we can use this local scale invariance of the massless particle
Hamiltonian to derive the classical analogues of the Snyder commutators [19], which were
derived in 1947 in a projective geometry approach to the de Sitter space in the momentum
representation.

In section three we review the construction of the 2T physics action and explicitly display
its rigid and local infinitesimal symmetries. We compute the conserved Hamiltonian Noether
charge and show that the finite local scale invariance we found for the massless particle has
a simple and natural extension in 2T physics. Then we show how we can use this finite local
scale invariance of the 2T Hamiltonian to induce a Riemannian metric structure in d + 2
dimensions.

In section four we construct an action functional for 2T physics in the background of
a vector field of vanishing strength tensor. We display its rigid infinitesimal Lorentz SO(d,2)

invariance and compute the conserved Hamiltonian Noether charge in the presence of the
vector field. We find that this conserved charge is composed of the original first class con-
straints of 2T physics complemented with three first class constraints which involve the
vector field and the canonical variables. These last three first class constraints must be used
in the place of conditions (1.3) when FMN = 0. We also show how the Riemannian metric
structure we found in the absence of the vector field in section three is preserved in the pres-
ence of the vector field. We conclude that we have found, already in classical 2T physics,
the fundamental necessary ingredients for the topologically non trivial construction of quan-
tum mechanics described in [1], that is, a Riemannian metric structure and a vector field of
vanishing strength tensor. We were able to do this because 2T physics has a classical lo-
cal Sp(2,R) invariant generalization of the discrete duality symmetry between position and
momentum that underlies the structure of quantum mechanics. Other concluding remarks
appear in section five.
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2 Massless Relativistic Particles

Before considering topological aspects in 2T physics, it is instructive to consider these
aspects in massless scalar particle theory. A massless scalar relativistic particle in a
d-dimensional Minkowski space with signature (d − 1,1) is described by the Lagrangian
action

S = 1

2

∫
dτλ−1ẋ2 (2.1)

where xμ(τ) are the position coordinates, λ(τ) is an auxiliary variable and a dot denotes
derivatives with respect to the parameter τ . Action (2.1) is invariant under the local infini-
tesimal reparametrizations

δxμ = ε(τ )ẋμ, δλ = d

dτ
[ε(τ )λ] (2.2)

and therefore describes gravity on the world-line. Action (2.1) is also invariant under the
following rigid infinitesimal transformations. Poincaré transformations

δxμ = aμ + ωμ
ν xν, δλ = 0 (2.3)

where ωμν = −ωνμ is a constant matrix, under the scale transformations

δxμ = αxμ, δλ = 2αλ (2.4)

where α is a constant, and under the conformal transformations

δxμ = (2xμxν − ημνx2)bν, δλ = 4λx.b (2.5)

where bμ is a constant vector. Finite conformal transformations, given by [3]

x̃μ = xμ + bμx2

1 − 2b.x + b2x2
, (2.6a)

λ̃ = λ

(1 − 2b.x + b2x2)2
(2.6b)

are not globally defined, and to be well defined require a compactification of the
d-dimensional Minkowski space by including the points at infinity. A possible compact-
ification is the “quadric” described in [2]. In this paper we will not assume such a com-
pactification, and therefore finite conformal transformations of the type (2.6) will not be
considered as symmetries of action (2.1).

Although action (2.1) is not invariant under the finite conformal transformations (2.6), it
is invariant under the finite scale transformation [3]

x̃μ = exp{β}xμ, λ̃ = exp{2β}λ
where β is a constant parameter. But action (2.1) is not invariant under the local infini-
tesimal scale transformation δxμ = β(τ)xμ, δλ = 2β(τ)λ, nor under the finite local scale
transformation x̃μ = exp{β(τ)}xμ, λ̃ = exp{2β(τ)}λ. As we will see below, although finite
local scale transformations are not symmetries of action (2.1), they are symmetries of the
corresponding canonical Hamiltonian. This will turn out to be related to the appearance, in
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massless particle theory, of the classical analogues of the old Snyder commutators, derived
for the de Sitter space in the momentum representation.

As a consequence of the infinitesimal invariances (2.3), (2.4) and (2.5) of action (2.1) we
can define in space-time the following vector field

V = aμPμ − 1

2
ωμνMμν + αD + bμKμ (2.7)

with generators

Pμ = pμ, (2.8a)

Mμν = xμpν − xνpμ, (2.8b)

D = x.p, (2.8c)

Kμ = 2xμx.p − x2pμ (2.8d)

Pμ generates translations in space-time, Mμν is the generator of Lorentz transformations,
D is the generator of space-time dilatations and Kμ generates conformal transformations.
These generators define the algebra

{Mμν,Mλρ} = ηνλMμρ + ημρMνλ − ηνρMμλ − ημλMνρ,

{Mμν,Pλ} = ημλPν − ηνλPμ, {Mμν,Kλ} = ηνλKμ − ηλμKν,

{D,Pμ} = Pμ, {D,Kμ} = −Kμ, {D,D} = 0, (2.9)

{Kμ,Pν} = 2(ημνD + Mμν),

{D,Mμν} = {Pμ,Pν} = {Kμ,Kν} = 0

computed in terms of the Poisson brackets

{pμ,pν} = {xμ, xν} = 0, {xμ,pν} = ημν. (2.10)

The algebra (2.9) is the conformal space-time algebra. The scalar massless particle theory
defined by action (2.1) is a conformal theory in d dimensions.

Conformal invariance in d dimensions is isomorphic to Lorentz invariance in d + 2 di-
mensions. By defining [3]

Lμν = Mμν, (2.11a)

Lμd = 1

2
(Pμ + Kμ), (2.11b)

Lμ(d+1) = 1

2
(Pμ − Kμ), (2.11c)

Ld(d+1) = D (2.11d)

the conformal algebra (2.9) can be put in the standard form

{LMN,LRS} = ηMRLNS + ηNSLMR − ηMSLNR − ηNRLMS (2.12)

with M,N = 0,1, . . . , d, d + 1 and ηMN = diag(−1,+1, . . . ,+1,−1). This shows that
there are hidden dimensions in scalar massless particle theory. In the next section we will
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use these hidden dimensions to generalize the world-line action (2.1) to a more symmetric
theory in a (d + 2)-dimensional space-time.

Lagrangian mechanics is contained in Hamiltonian mechanics [14]. To be more general
we must pass to the Hamiltonian formalism. In the transition to this formalism action (2.1)
gives the canonical momenta

pλ = 0, (2.13)

pμ = ẋμ

λ
(2.14)

and the canonical Hamiltonian

H = 1

2
λp2. (2.15)

Equation (2.13) is a primary constraint [15]. Introducing the Lagrange multiplier ξ(τ ) for
this constraint we can write the Dirac Hamiltonian

HD = 1

2
λp2 + ξpλ. (2.16)

Requiring the dynamic stability of constraint (2.13), ṗλ = {pλ,HD} = 0, we obtain the sec-
ondary constraint

φ = 1

2
p2 ≈ 0. (2.17)

Constraints (2.13) and (2.17) have vanishing Poisson bracket, being therefore first-class con-
straints [15]. The gauge transformations generated by φ are discussed below. Constraint
(2.13) generates translations in the arbitrary variable λ(τ) and can be dropped from the
formalism.

In equation (2.17) we introduced [16] the weak equality symbol ≈. This is to emphasize
that constraint φ is numerically restricted to be zero in the subspace of phase space where
the canonical momentum satisfies (2.17), but φ does not identically vanish throughout phase
space. In particular, it has nonzero Poisson brackets with the canonical positions. More
generally, two functions F and G that coincide on the submanifold of phase space defined
by the constraints are said to be weakly equal over phase space and one writes F ≈ G. On the
other hand, an equation that holds throughout phase space, and not just on the submanifold
defined by the constraint equations, is called strong, and the usual equality symbol is used
in that case. It can be demonstrated that, in general [16]

F ≈ G ⇔ F − G = ci(x,p)φi (2.18)

where φi denote the constraints.
Equation (2.17) can be treated as a constraint only if the points with p0 = p1 = · · · =

pd−1 = 0, corresponding to the trivial representation of the Poincaré group, are excluded
from phase space [3]. From the definition of the canonical momentum (2.14) the points with
x0 = x1 = · · · = xd−1 = 0 must also be excluded for consistency. This introduces a non-
trivial phase space topology and makes a scalar massless relativistic particle similar to the
non-relativistic charge-monopole system [3, 17]. Due to this non trivial phase space topol-
ogy, a flat U(1) bundle will necessarily be present in the quantized massless particle theory.
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To further develop the Hamiltonian formalism, we write action (2.1) in the form

S =
∫ τf

τi

dτ

(
ẋ.p − 1

2
λp2

)
. (2.19)

If we solve the equation of motion for pμ that follows from (2.19) and insert the result back
in it, we recover action (2.1). Constraint (2.17) generates the local infinitesimal transforma-
tion

δxμ = ε(τ ){xμ,φ} = ε(τ )pμ, (2.20a)

δpμ = ε(τ ){pμ,φ} = 0, (2.20b)

δλ = ε̇(τ ) (2.20c)

under which action (2.19) transforms as

δS =
∫ τf

τi

dτ
d

dτ
(εφ). (2.21)

Since the interval (τi, τf ) is arbitrary, we see that action (2.19) is invariant under transforma-
tions (2.20), and that the quantity Q = εφ can be interpreted as the conserved Hamiltonian
Noether charge or as the generator of the local transformations (2.20), depending on wether
the equations of motion are satisfied or not [18]. This particular aspect of the quantity Q

will be used as a consistency check when we introduce vector fields in 2T physics below.
The most general physically permissible motion should allow for an arbitrary gauge

transformation to be performed while the system is dynamically evolving in time [16]. Since
the dynamic time evolution of a physical system is governed by its Hamiltonian, this arbi-
trary gauge transformation must leave the Hamiltonian invariant. In the case of the scalar
relativistic massless particle, parametrized by τ , we point out that the Hamiltonian (2.15) is
invariant under the finite local scale transformations

p̃μ = exp{−β(τ)}pμ, (2.22a)

λ̃ = exp{2β(τ)}λ (2.22b)

where β(τ) is an arbitrary scalar function. From (2.14) for the canonical momentum we find
that xμ transforms as

x̃μ = exp{β(τ)}xμ (2.22c)

when pμ transforms as in (2.22a). The finite local scale transformation (2.22) is a symmetry
in phase space but, as we saw above, it breaks down if we try a transition to configuration
space. It is interesting, in the case when β(τ) = β(x(τ)), to try to relate, using the corre-
spondence principle, the local scale transformation (2.22c) of the position variables with the
local phase transformation (1.1) of the position eigenstates. Gravity and the flat U(1) bundle
would then be related by finite local scale invariance. We will not consider this point here.

Consider now the bracket structure that transformations (2.22a) and (2.22c) induce in
phase space. The following calculations are an improved, more rigorous version, of the ones
which appear in [20]. Retaining only the linear terms in β in the exponentials, we find that
the new transformed canonical variables (x̃μ, p̃μ) obey the brackets

{p̃μ, p̃ν} = (β − 1)[{pμ,β}pν + pμ{β,pν}] + {β,β}pμpν, (2.23a)



1580 Int J Theor Phys (2008) 47: 1571–1593

{x̃μ, p̃ν} = (1 + β)[δμν(1 − β) − {xμ,β}pν]
+ (1 − β)xμ{β,pν} − {β,β}xμpν, (2.23b)

{x̃μ, x̃ν} = (1 + β)[xμ{β,xν} − xν{β,xμ}] + {β,β}xμxν. (2.23c)

If we choose β = φ in (2.23) and compute the brackets on the right side in terms of the Pois-
son brackets (2.10), we find the expressions, after dropping terms proportional to β2 = φ2

{p̃μ, p̃ν} = 0, (2.24a)

{x̃μ, p̃ν} = ημν − pμpν, (2.24b)

{x̃μ, x̃ν} = −Mμν − Mμνφ. (2.24c)

Now, keeping the same order of approximation used to arrive at brackets (2.23), that is,
retaining only the linear terms in β , the transformation equations (2.22a) and (2.22c) read

p̃μ = exp{−β}pμ = (1 − β)pμ, (2.25a)

x̃μ = exp{β}xμ = (1 + β)xμ. (2.25b)

Using again the same function β = φ in (2.25), we write them as

p̃μ − pμ = cμ(x,p)φ, (2.26a)

x̃μ − xμ = dμ(x,p)φ (2.26b)

where cμ(x,p) = −pμ and dμ(x,p) = xμ. Equations (2.26) are in the form (2.18) and so
we can write

p̃μ ≈ pμ, x̃μ ≈ xμ. (2.27)

Using (2.18) and (2.27) in brackets (2.24), we can finally write the phase space brackets

{pμ,pν} ≈ 0, (2.28a)

{xμ,pν} ≈ ημν − pμpν, (2.28b)

{xμ, xν} ≈ −Mμν. (2.28c)

In a transition to the quantum theory by the correspondence principle rule that [commutators]
=i�{brackets}, the brackets (2.28) will reproduce the Snyder commutators [19] in the case
when the noncommutativity parameter is θ = 1. The Snyder commutators were obtained
in a projective geometry approach to the de Sitter space in the momentum representation.
Here we have derived their classical correspondents from the finite local scale invariance
(2.22) of the scalar massless particle Hamiltonian. However, we have not succeeded in ob-
taining from the finite local scale invariance (2.22) the Riemannian metric structure required
by quantum dynamics in the position representation. The massless particle does not have
enough gauge freedom for this metric structure to be derived in the same way we derived the
momentum space brackets (2.28). This is because the canonical Hamiltonian (2.15) explic-
itly distinguishes momentum from position. As we will see in the next section, this situation
changes in 2T physics, where momentum and position are indistinguishable variables, and
a metric structure can be derived in d + 2 dimensions in exactly the same way we derived
the d dimensional momentum space brackets (2.28).
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It can be verified that brackets (2.28) satisfy all Jacobi identities among the canonical
variables, preserve the d dimensional conformal algebra (2.9) and preserve the first class
property of constraint (2.17), therefore preserving gauge invariance. Due to the non-trivial
topology of the massless particle configuration space, a vector field of vanishing strength
tensor must be present in the quantum theory. We will not consider this point here. Instead
we will concentrate on a discussion of this same situation in classical 2T physics, which
contains the d dimensional massless scalar relativistic particle as a gauge-fixed subsystem.
For a general parametrization of the classical solutions of 2T physics in any gauge, see [7].

Hamiltonian (2.15) gives the classical equations of motion

ẋμ = {xμ,H } = λpμ, (2.29a)

ṗμ = {pμ,H } = 0. (2.29b)

Equation (2.29b) shows that the massless particle moves with a constant momentum rel-
ative to the parameter τ , and is therefore a freely moving particle. This situation changes
in 2T physics because the Sp(2,R) local invariance or, in other words, the local indistin-
guishability between position and momentum, brings with it an intrinsic interaction and as
a result a massless relativistic particle in a d + 2 dimensional space-time can no longer be
completely free. The idea in this paper is that it feels the effect of an intrinsic curved d + 2
dimensional background.

3 Two-Time Physics

In the usual one-time (1T) physics, a metric structure appears in the most general configura-
tion space formulation of quantum mechanics [1]. 1T physics has been, and can always be
used, to confirm the predictions of 2T physics. In this paper we follow the opposite route.
This route is to investigate the possible existence of the d + 2 dimensional generalization of
a well known situation in 1T physics. Specifically, here we are interested in the construction
of a d + 2 dimensional general formulation of quantum mechanics. This general formu-
lation is expected to contain non relativistic quantum mechanics in d − 1 dimensions and
relativistic quantum mechanics in d dimensions as gauge-fixed subsectors. However, before
trying to construct such a theory, we must verify if its basic ingredients are available. In this
section we show how a natural metric structure can be found in d + 2 dimensions. We start
by reviewing the basic ideas that led to 2T physics.

The quantization rules of quantum mechanics are symmetric under the interchange of
coordinates and momenta. This is known as the discrete symplectic symmetry Sp(2) that
transforms (x,p) as a doublet. The central idea in two-time physics [6–12] is to introduce
a new gauge invariance in phase space by gauging the duality of the quantum commutator
[XM,PN ] = i�ηMN . This procedure leads to a symplectic Sp(2,R) gauge theory. To remove
the distinction between position and momentum we set XM

1 = XM and XM
2 = P M and define

the doublet XM
i = (XM

1 ,XM
2 ). The local Sp(2,R) acts as

δXM
i (τ ) = εikω

kl(τ )XM
l (τ ) (3.1)

ωij (τ ) is a symmetric matrix containing three local parameters and εij is the Levi-Civita
symbol that serves to raise or lower indices. The Sp(2,R) gauge field Aij is symmetric in
(i, j) and transforms as

δAij = ∂τω
ij + ωikεklA

lj + ωjkεklA
il . (3.2)
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The covariant derivative is

DτX
M
i = ∂τX

M
i − εikA

klXM
l . (3.3)

An action invariant under the Sp(2,R) gauge symmetry is

S = 1

2

∫
dτ(DτX

M
i )εijXN

j ηMN . (3.4)

In Hamiltonian form action (3.4) becomes

S =
∫

dτ

[
Ẋ.P −

(
1

2
λ1P

2 + λ2X.P + 1

2
λ3X

2

)]
(3.5)

where λα, α = 1,2,3 are Lagrange multipliers and the canonical Hamiltonian is

H = 1

2
λ1P

2 + λ2X.P + 1

2
λ3X

2. (3.6)

The equations of motion for the λ’s give the first-class constraints

φ1 = 1

2
P 2 ≈ 0, (3.7)

φ2 = X.P ≈ 0, (3.8)

φ3 = 1

2
X2 ≈ 0. (3.9)

Constraints (3.7–3.9), as well as evidences of two-time physics, were independently ob-
tained in [3]. The presence of first class constraints and the associated gauge freedom in-
dicates that there is more than one set of canonical variables that corresponds to a given
physical state [16]. However, equations (3.7) and (3.9) can be treated as constraints only if
the hypersurfaces X0 = X1 = · · · = Xd+1 = 0 and P0 = P1 = · · · = Pd+1 = 0 are excluded
from phase space. Only in this case the gauge orbits generated by φ1 and φ3 are regular
[3, 16]. Here then we also have a phase space with a non-trivial topology. If we consider the
Euclidean, or the Minkowski metric as the background space-time, we find that the surface
defined by the constraint equations (3.7–3.9) is trivial. The only metric giving a non-trivial
surface, preserving the unitarity of the theory, and avoiding the ghost problem is a flat metric
with two time-like dimensions [6–12]. Following [6–12] we introduce another space-like
dimension and another time-like dimension and start working in a Minkowski space with
signature (d,2). Action (3.5) is the d + 2 dimensional generalization of the d dimensional
massless particle action (2.19). Action (3.5) describes conformal gravity on the world-line
[7, 23, 24]. Constraints (3.7–3.9) can also be interpreted as describing a massless particle
living on the border of a d + 1 dimensional AdS space of infinite radius [3].

In terms of the Poisson brackets

{PM,PN } = {XM,XN } = 0, {XM,PN } = ηMN (3.10)

the local infinitesimal Sp(2,R) transformations of action (3.5) are

δXM = εα(τ ){XM,φα} = ε1PM + ε2XM, (3.11a)

δPM = εα(τ ){PM,φα} = −ε2PM − ε3XM, (3.11b)
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δλ1 = ε̇1 + 2ε2λ1 − 2ε1λ2, (3.11c)

δλ2 = ε̇2 + ε3λ1 − ε1λ3, (3.11d)

δλ3 = ε̇3 + 2ε3λ2 − 2ε2λ3, (3.11e)

under which

δS =
∫ τf

τi

dτ
d

dτ
(εαφα). (3.12)

As in the massless particle case, since the interval (τi, τf ) is arbitrary, the quantity Q = εαφα

with α = 1,2,3 can be interpreted as the conserved Hamiltonian Noether charge, or as the
generator of the local infinitesimal transformations (3.11), depending on wether the equa-
tions of motion are satisfied or not [18].

Rigid infinitesimal SO(d,2) transformations have the generator [6–12]

LMN = XMPN − XNPM. (3.13)

The LMN satisfy the algebra (2.12) and generate the transformations

δXM = −1

2
ωRS{XM,LRS} = ωMRXR, (3.14a)

δPM = −1

2
ωRS{PM,LRS} = ωMRPR, (3.14b)

δλα = 0 (3.14c)

under which δS = 0. Because the LMN are gauge invariant, {LMN,φα} = 0, the SO(d,2)

invariance is also present in all the d dimensional relativistic systems that can be obtained
from the 2T physics action (3.5) by imposing two gauge conditions, and in all the (d − 1) di-
mensional non-relativistic systems that can be obtained from (3.5) by imposing three gauge
conditions.

Let us now consider how a Riemannian metric structure can be induced in the d + 2
dimensional flat space-time of 2T physics. The 2T Hamiltonian (3.6) is invariant under the
finite local scale transformations

X̃M = exp{β(τ)}XM, (3.15a)

P̃M = exp{−β(τ)}PM, (3.15b)

λ̃1 = exp{2β(τ)}λ1, (3.15c)

λ̂2 = λ2, (3.15d)

λ̃3 = exp{−2β(τ)}λ3 (3.15e)

where β(τ) is an arbitrary scalar function. The subsequent steps are simply higher dimen-
sional extensions of those for the massless particle. Keeping only the linear terms in β in
transformation (3.15), we arrive at the brackets

{P̃M, P̃N } = (β − 1)[{PM,β}PN + {β,PN }PM ] + {β,β}PMPN (3.16a)

{X̃M, P̃N } = (1 + β)[ηMN(1 − β) − {XM,β}PN ]
+ (1 − β)XM{β,PN } − XMXN {β,β} (3.16b)
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{X̃M, X̃N } = (1 + β)[XM{β,XN } − XN {β,XM}] + XMXN {β,β}. (3.16c)

If we choose β = φ1 in (3.16) and compute the brackets on the right side using the Poisson
brackets (3.10), we find the expressions, after dropping terms proportional to β2 = φ2

1

{P̃M, P̃N } = 0, (3.17a)

{X̃M, P̃N } = ηMN − PMPN, (3.17b)

{X̃M, X̃N } = −LMN − LMNφ1. (3.17c)

In the same order of approximation used to arrive at brackets (3.16), transformation equa-
tions (3.15a) and (3.15b) read

X̃M = exp{β}XM = (1 + β)XM, (3.18a)

P̃M = exp{−β}PM = (1 − β)PM. (3.18b)

Using again the same function β = φ1 in (3.18), we write them as

X̃M − XM = CM
α (X,P )φα, (3.19a)

P̃M − PM = Dα
M(X,P )φα (3.19b)

with CM
1 = XM, CM

2 = CM
3 = 0 and D1

M = −PM, D2
M = D3

M = 0. Equations (3.19) are in
the form (2.18) and so we can write

X̃M ≈ XM, P̃M ≈ PM. (3.20)

Using these weak equalities in brackets (3.17) we can write the phase space brackets

{PM,PN } ≈ 0, (3.21a)

{XM,PN } ≈ ηMN − PMPN, (3.21b)

{XM,XN } ≈ −LMN. (3.21c)

Brackets (3.21) are the (d + 2) dimensional extensions of the d dimensional momentum
space brackets (2.28) we found for the massless relativistic particle. But in 2T physics, where
XM and PM are locally indistinguishable variables, brackets (3.21) have a dual version in
position space. We can perform the duality transformation

XM → PM, (3.22a)

PM → −XM, (3.22b)

λ1 → λ3, λ2 → −λ2, λ3 → λ1 (3.22c)

which leaves the 2T Hamiltonian (3.6) invariant, and under which the 2T action (3.5) trans-
forms as δS = − ∫ τf

τi
dτ d

dτ
(X.P ), being therefore invariant up to a surface term. However,

we can not simply substitute the duality transformations (3.22a) and (3.22b) in bracket
(3.21b) in order to obtain a metric structure in position space in d + 2 dimensions. This
procedure introduces incorrect minus signs in some of the resultant brackets and as a re-
sult the Jacobi identities involving position and momentum fail to close. This is because,
as we saw in the introduction, the gravitational field, regarded as a gauge field, corresponds
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to the group of continuous local scale transformations and not to duality transformations of
the type (3.22). The correct procedure starts by noting that transformation (3.22) changes
the function β = 1

2P 2, we used to arrive at brackets (3.21) into the new function β = 1
2X2.

Introducing this new function into brackets (3.16), which are the consequences in phase
space of the presence of the finite local scale invariance (3.15) of the 2T Hamiltonian, and
performing the same steps as in the case β = 1

2P 2, we arrive at the position space brackets

{PM,PN } ≈ LMN, (3.23a)

{XM,PN } ≈ ηMN + XMXN, (3.23b)

{XM,XN } ≈ 0. (3.23c)

Notice that we can not obtain brackets (3.23) by performing the duality transformation (3.22)
in brackets (3.21). From equation (3.23b) we see that we can use the finite local scale in-
variance (3.15) of the 2T Hamiltonian to change from the flat Minkowski space with metric
ηMN to a Riemannian space with metric tensor

GMN = ηMN + XMXN. (3.24)

This procedure of incorporating gravitational effects into quantum mechanics by modifying
the commutator [XM,PN ] (or the corresponding classical bracket, as is the case here) is
not new and in the usual 1T physics it becomes unavoidable [25] at energy scales near
the Planck scale. In 2T physics this procedure can not change the dynamic evolution of
the system because the Hamiltonian (3.6) is invariant under the local scale transformation
(3.15). In fact, Hamiltonian (3.6) generates the classical equations of motion

ẊM = {XM,H } = λ1PM + λ2XM, (3.25a)

ṖM = {PM,H } = −λ2PM − λ3XM (3.25b)

computed in terms of the Poisson brackets (3.10). Equation (3.25b) shows that the particle’s
momentum is no longer constant relative to the parameter τ . An interaction is perceived by
the massless particle as a result of its embedding in d + 2 dimensions. The idea here is that
it feels the effect of the background (3.24).

It is easy to verify that if we leave the d +2 dimensional Minkowski space of 2T physics,
and use the local scale transformation (3.15) to change to the d + 2 dimensional space with
metric tensor (3.24), the new Hamiltonian will differ from (3.6) by terms that are quadratic
in the first class constraints. These quadratic terms can be dropped, and in the linear ap-
proximation the Hamiltonian in the background (3.24) is identical to (3.6). In addition, the
equations of motion computed using the Hamiltonian (3.6) and brackets (3.23) differ from
the equations of motion (3.25) by terms that are linear in the constraints. These linear terms
can also be dropped and the equations of motion in the background (3.24), computed in
terms of brackets (3.23), are identical to (3.25). We are then forced to conclude that the
d + 2 dimensional space with metric tensor (3.24) is an equally valid natural background
for 2T physics because no homothety condition [12] is necessary here. This was unknown
until now. More surprising is that, after dropping the terms proportional to the constraints,
the Hamiltonian and the equations of motion in the momentum space background

ḠMN = ηMN − PMPN (3.26)
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where brackets (3.21) are valid, are also identical to (3.6) and (3.25), respectively. The flat
d +2 dimensional Minkowski space is not the only possible space for 2T physics. The d +2
dimensional position space (3.24) and the d + 2 dimensional momentum space (3.26) are
also possible and more general spaces for 2T physics. The important point here is that, rea-
soning in analogy to known results in 1T physics [1], we may expect that the transition to
these more general d + 2 dimensional backgrounds will be necessary to guarantee the cor-
rect normalization of the position and momentum eigenstates, the correct spectral decompo-
sition of the identity operator in the position and momentum eigenbasis, the correct matrix
elements of the position and momentum operators, and also the correct integration measure
for the inner product of any two states in a general configuration space or momentum space
formulation of quantum mechanics in d + 2 dimensions.

To conclude this section we mention that in our derivation of brackets (3.21) and (3.23)
there is no need to use the Dirac bracket because there is no second class constraint to begin
with. Dirac brackets would have appeared if we had imposed gauge conditions to turn the
first class constraints (3.7–3.9) into second class ones. This would bring us back to d − 1 di-
mensions. An example of this is that the d dimensional brackets (2.28), we obtained for the
massless particle using scale invariance arguments, can also be derived as a Dirac bracket
after imposing two canonical gauge conditions [30] which turn the first class constraints
(3.8) and (3.9) of 2T physics into second class constraints. In this paper, this restriction of
the gauge freedom using the Dirac bracket technique, although possible, is not necessary.
This will guarantee that we are in d + 2 dimensions. Bypassing the Dirac brackets is a sub-
stantial advantage for our purposes here. Indeed, the quantum realization of Dirac brackets
that depend on the canonical variables may be highly nontrivial and is by no means guaran-
teed [16].

4 2T Physics with Topological Vector Fields

Now we explicitly take into account the non-trivial phase space topology of 2T physics.
This can be done by introducing a vector field AM(X) which defines a section of a flat
U(1) bundle over space-time [1]. The vector field must have a vanishing antisymmetric
second rank strength tensor, FMN = ∂MAN − ∂NAM = 0. When this condition is met, the
flat U(1) bundle may be characterized [1], up to local infinitesimal reparametrizations, by
the differential 1-form dXMAM(X).

As we saw in section three, to obtain regular gauge orbits for the first class constraints of
2T physics, the origin of phase space must be removed. This creates a topological obstruc-
tion to the reduction of the vector field AM(X) to a pure gauge, AM = ∂χ(X)

∂XM , where χ(X)

is an arbitrary function. In other words, the vector field must be present in the quantized 2T
theory. In this section we search for a corresponding classical action. As an initial attempt
we modify action (3.5) according to the usual minimal coupling prescription to vector fields,
PM → PM −AM . This produces the correct U(1) covariant derivative in the quantum theory
[1]. The 2T action in this case is

S =
∫

dτ

{
Ẋ.P −

[
1

2
λ1(P − A)2 + λ2X.(P − A) + 1

2
λ3X

2

]}
(4.1)

where the Hamiltonian is

H = 1

2
λ1(P − A)2 + λ2X.(P − A) + 1

2
λ3X

2. (4.2)
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The equations of motion for the multipliers now give the constraints

φ1 = 1

2
(P − A)2 ≈ 0, (4.3)

φ2 = X.(P − A) ≈ 0, (4.4)

φ3 = 1

2
X2 ≈ 0. (4.5)

The Poisson brackets between the canonical variables and the vector field are

{XM,AN } = 0, (4.6a)

{PM,AN } = − ∂AN

∂XM
, (4.6b)

{AM,AN } = 0. (4.6c)

Computing the algebra of constraints (4.3–4.5) using the Poisson brackets (3.10) and
(4.6) we obtain the equations

{φ1, φ1} = (P M − AM)FMN(P N − AN), (4.7a)

{φ1, φ2} = −2φ1 + (P M − AM)
∂

∂XM
(X.A) − (P − A).A

−XM ∂

∂XM
[(P − A).A] − XM ∂

∂XM

(
1

2
A2

)
, (4.7b)

{φ2, φ2} = XMFMNXN, (4.7c)

{φ1, φ3} = −φ2, (4.7d)

{φ2, φ3} = −2φ3, (4.7e)

{φ3, φ3} = 0. (4.7f)

For the case in which we are interested in this paper, we see from the above equations
that constraints (4.3–4.5) become first class constraints when the vector field satisfies the
conditions

FMN = 0, (4.8a)

X.A = 0, (4.8b)

(P − A).A = 0, (4.8c)

1

2
A2 = 0. (4.8d)

Condition (4.8a) implies that the vector field AM(X) defines a section of a flat U(1) bundle
over the d +2 dimensional space-time. Observe that in the case when FMN 
= 0 the vanishing
of bracket (4.7c) leads to the same condition (1.4) obtained in [12]. But here a careful look at
bracket (4.7a) suggests that, in the presence of a vector field for which FMN 
= 0, condition
(1.4) should be complemented with the condition (P M − AM)FMN = 0. This would render
the theory simultaneously in agreement with the minimal coupling prescription to vector
fields and with the local indistinguishability between XM and P M −AM(X) in the presence
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of the vector field. A curious observation is that P M also becomes indistinguishable from
XM − AM(P ). This point will be considered in a future paper [22].

As can be easily verified, conditions (4.8b–4.8d) imply that constraints (4.3–4.5) are
not the irreducible [16] set of constraints for 2T physics with a topological vector field.
Combining then conditions (4.8b–4.8d) with constraints (4.3–4.5), we obtain the irreducible
set of constraints

φ1 = 1

2
P 2 ≈ 0, (4.9)

φ2 = X.P ≈ 0, (4.10)

φ3 = 1

2
X2 ≈ 0, (4.11)

φ4 = X.A ≈ 0, (4.12)

φ5 = P.A ≈ 0, (4.13)

φ6 = 1

2
A2 ≈ 0. (4.14)

Observe that Dirac’s conditions (1.2a) and (1.2b) are now reproduced by constraints φ4 and
φ5. The contrast with the set (1.2) is that our calculation leads to a scalar third condition on
the vector field, a condition which will now be verified to be the correct constraint for the
2T theory in the presence of a vector field for which FMN = 0.

It can be verified that constraints (4.9–4.14) are all first class. We can then write down
the Hamiltonian action

S =
∫ τf

τi

dτ

[
Ẋ.P −

(
1

2
λ1P

2 + λ2X.P + 1

2
λ3X

2 + λ4X.A + λ5P.A + 1

2
λ6A

2

)]
(4.15)

describing two-time physics with a vector field of topological origin. The Hamiltonian is

H = 1

2
λ1P

2 + λ2X.P + 1

2
λ3X

2 + λ4X.A + λ5P.A + 1

2
λ6A

2. (4.16)

The LMN in (3.13) generate the rigid infinitesimal SO(d,2) transformations in action
(4.15)

δXM = −1

2
ωRS{XM,LRS} = ωMRXR, (4.17a)

δPM = −1

2
ωRS{PM,LRS} = ωMRPR, (4.17b)

δAM = ∂AM

∂XR

δXR, (4.17c)

δλ� = 0, � = 1,2, . . . ,6 (4.17d)

under which δS = 0. It can be checked that LMN has weakly vanishing brackets with the
first class constraints (4.9–4.14), being therefore gauge invariant.

Action (4.15) also has the local infinitesimal invariance

δXM = ε�(τ ){XM,φ�} = ε1PM + ε2XM + ε5AM, (4.18a)
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δPM = ε�(τ ){PM,φ�} = −ε2PM − ε3XM − ε4AM

− ε4XN

∂AN

∂XM
− ε5PN

∂AN

∂XM
− ε6AN

∂AN

∂XM
, (4.18b)

δAM = ∂AM

∂XN
δXN, (4.18c)

δλ1 = ε̇1 + 2ε2λ1 − 2ε1λ2, (4.18d)

δλ2 = ε̇2 + ε3λ1 − ε1λ3, (4.18e)

δλ3 = ε̇3 + 2ε3λ2 − 2ε2λ3, (4.18f)

δλ4 = ε̇4 + ε3λ5 − ε5λ3, (4.18g)

δλ5 = ε̇5 + ε2λ5 − ε5λ2 (4.18h)

δλ6 = ε̇6 (4.18i)

under which

δS =
∫ τf

τi

dτ
d

dτ
(ερφρ). (4.19)

Now the conserved charge, or the generator of the local transformations, depending on
wether the equations of motion are satisfied or not, is the quantity Q = ερφρ with ρ =
1,2, . . . ,6. This generalizes the local infinitesimal invariance (3.11) of 2T physics to the
case when a vector field of vanishing strength tensor is present.

Hamiltonian (4.16) is invariant under the finite local scale transformations

X̃M = exp{β(τ)}XM, (4.20a)

P̃M = exp{−β(τ)}PM, (4.20b)

ÃM = exp{−β(τ)}AM, (4.20c)

λ̃1 = exp{2β(τ)}λ1, (4.20d)

λ̃2 = λ2, (4.20e)

λ̃3 = exp{−2β(τ)}λ3, (4.20f)

λ̃4 = λ4, (4.20g)

λ̃5 = exp{2β(τ)}λ5, (4.20h)

λ̃6 = exp{2β(τ)}λ6. (4.20i)

Notice that transformations (4.20b) and (4.20c) are consistent with the minimal coupling
prescription to vector fields. Using the invariance (4.20) we can arrive, if we choose β = φ1,

at the same brackets (3.21). We can arrive at brackets (3.23) by choosing β = φ3 as before.
The metric structure (3.24) in position space and the metric structure (3.26) in momentum
space we obtained in section three are then both preserved in the presence of a vector field
of vanishing strength tensor.

In the presence of the vector field we can again change to the backgrounds (3.24) or
(3.26) without changing the dynamic evolution of the system. For instance, if we perform
the change to the background (3.24) we find that the new Hamiltonian differs from (4.16)
by terms that are quadratic in the first class constraints (4.9–4.14). These quadratic terms
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can again be dropped and in the linear approximation the Hamiltonian in the background
(3.24), and in the presence of the vector field, is identical to (4.16). The classical equations
of motion generated by the Hamiltonian (4.16), computed in terms of the Poisson brackets
(3.10) and (4.6), are

ẊM = {XM,H } = λ1PM + λ2XM + λ5AM, (4.21a)

ṖM = {PM,H } = −λ2PM − λ3XM − λ4AM

−λ4XN

∂AN

∂XM
− λ5PN

∂AN

∂XM
− λ6AN

∂AN

∂XM
, (4.21b)

ȦM = {AM,H } = λ1PN

∂AM

∂XN
+ λ2XN

∂AM

∂XN
+ λ5AN

∂AM

∂XN
. (4.21c)

The local scale transformation (4.20) with the function β = 1
2X2 changes the Poisson brack-

ets (4.6) into the new set

{XM,AN } = 0, (4.22a)

{PM,AN } = − ∂AN

∂XM
+ XMAN, (4.22b)

{AM,AN } = 0. (4.22c)

Now, computing the equations of motion generated by the Hamiltonian (4.16) in terms of
the brackets (3.23) and (4.22), we find that these equations differ from equations (4.21) by
terms that are linear in the first class constraints (4.9–4.14). These terms can be dropped
and the classical equations of motion in the background (3.24) become identical to (4.21),
which are valid in the flat d + 2 dimensional background. The same situation occurs in the
background (3.26) after the Poisson brackets (4.6) are replaced by the brackets

{XM,AN } = −PMAN − XMPS

∂AN

∂XS
, (4.23a)

{PM,AN } = − ∂AN

∂XM
+ PMPS

∂AN

∂XS
, (4.23b)

{AM,AN } = AMPS

∂AN

∂XS
− ANPS

∂AM

∂XS
(4.23c)

which emerge after the local scale transformation (4.20) with β = 1
2P 2 is performed. Also

in the presence of the vector field, the d + 2 dimensional Minkowski space is not the only
possible space for 2T physics. The d + 2 dimensional spaces given by (3.24) and (3.26) are
also possible spaces. Although these three spaces are indistinguishable at the classical level,
this situation may change in quantum mechanics because the correct quantum dynamics
may emerge only after these underlying metric structures in position and momentum spaces,
together with the vector field of vanishing strength tensor, are explicitly taken into account
in all the relevant equations.

5 Concluding Remarks

In this paper we showed that it is possible to construct, in the d + 2 dimensional space-time
of classical 2T physics, the same geometrical and topological structures that are present in
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the most general configuration space formulation of quantum mechanics containing gravity
in d dimensions. The geometric structure is defined by a symmetric Riemannian metric ten-
sor and the topological structure is defined by a vector field with a vanishing antisymmetric
strength tensor which defines a section of a flat U(1) bundle over space-time. This d + 2
dimensional construction is possible first because of the existence of a finite local scale in-
variance of the 2T canonical Hamiltonian, and second because 2T physics contains at the
classical level a local continuous generalization of the discrete duality symmetry between
position and momentum that underlies the structure of quantum mechanics.

One of the results of this paper that requires a deeper investigation is the fact that the clas-
sical Hamiltonian 2T dynamics in the presence of the topological vector field and described
by the variables XM , PM and AM(X) satisfying the brackets

{PM,PN } = 0,

{XM,PN } = ηMN,

{XM,XN } = 0,

{XM,AN } = 0,

{PM,AN } = − ∂AN

∂XM
,

{AM,AN } = 0

is the same classical Hamiltonian dynamics described by the same variables but satisfying
the brackets

{PM,PN } = LMN,

{XM,PN } = ηMN + XMXN,

{XM,XN } = 0,

{XM,AN } = 0,

{PM,AN } = − ∂AN

∂XM
+ XMAN,

{AM,AN } = 0

and is also the same classical Hamiltonian dynamics described by the same variables but
now satisfying the brackets

{PM,PN } = 0,

{XM,PN } = ηMN − PMPN,

{XM,XN } = −LMN,

{XM,AN } = −PMAN − XMP S ∂AN

∂XS
,

{PM,AN } = − ∂AN

∂XM
+ PMP S ∂AN

∂XS
,

{AM,AN } = AMP S ∂AN

∂XS
− ANP S ∂AM

∂XS
.
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We may say that, as a consequence of finite local scale invariance, three formulations of
quantum dynamics in three different spaces have the same classical Hamiltonian limit de-
scribed by 2T physics.

Inspired by the example of the spherical harmonic oscillator in a punctured plane de-
scribed in [1], we are inclined to look at the holonomy parametrized by the 1-form dXMAM

as a higher dimensional Aharonov-Bohm flux line [26] piercing the configuration space at its
origin and in whose vector potential the d +2 dimensional massless particle moves. This can
explain the noncommutativity of the momenta that will be induced in the quantized theory if
bracket (3.23a) is assumed. It is well known [27] that in a magnetic field the momenta fail to
mutually commute. However, the vector field considered in this paper should not necessarily
be interpreted as having an electrodynamic origin because no electric charge was assumed
for the particle. Also, as became clear in the ADM construction [28] of general relativity,
a neutral scalar massless relativistic particle couples only to the gravitational field. A gravi-
tational or topological interpretation for the vector field is then also possible. An exotic but
interesting possibility may be to interpret the vector field as having a gravitodynamic origin
[29]. In any case, it turns out that in d + 2 dimensions the nontrivial holonomies associated
to the nontrivial representations of the Heisenberg algebra can also be regarded as being due
to some specific Aharonov-Bohm flux lines passing through holes in configuration space,
and which are characterized by the first homotopy group π1(M) of that space.

To conclude we would like to mention that the main motivation for this paper is to try to
apply the ideas of 2T physics in gravitational and quantum mechanical physics. This area of
theoretical physics seems to be left rather unexplored by the main researchers in 2T physics.
However, it is now clear that the Standard Model of Particles and Forces in 3+1 dimensions
is only part of a “master 2T theory” [31] in 4 + 2 dimensions. This “master 2T theory” is
exactly the massless particle in flat d + 2 dimensions described by action (3.5) in the case
when d = 4. The results of this paper then have the potential to bring with them entirely
new ways of incorporating gravitational and topological effects into the Standard Model. As
emphasized in [31], the higher space in d + 2 dimensions is not just formalism that could
be avoided. 1T physics can be used to verify and interpret the predictions of 2T physics,
but it is not equipped to come up with the predictions in the first place [31], unless one
stumbles into some of them occasionally, such as the SO(d,2) conformal symmetry of the
massless scalar relativistic particle we considered in section two. The results in this paper
are then relevant because they teach us that one of the great advantages of 2T physics over
1T physics is the classical continuous local indistinguishability of position and momenta
it explicitly displays. Before the advent of 2T physics this kind of indistinguishability, but
in a much more restricted discontinuous global form, was long known to exist in quantum
mechanics as a consequence of the wave-particle duality of matter and energy. The lessons
from 2T physics so far makes it evident that the ordinary 1T physics formulation of Nature
is insufficient to provide the explanation or even the existence [31] of the many unifying
facts revealed through 2T physics.
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